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The flow is investigated in a linear magnetohydrodynamic channel with two permeable
electrodes for the case of an anisotropic conductivity (stipulated by the Hall effect), when
the electroconductive medium is blown in through one electrode and sucked off through the
other. This scheme combines the properties of Hall and Faraday energy converters [1].

Mathematical determination of the electric field in the channel leads to the solution
of a Riemann — Hilbert inhomogeneous boundary value problem, which by the method of
analytic continuation is reduced to a Riemann boundary value problem in the class of
automorphic functions.

1. Let us consider a flat magn etohydrodynamic channel 0 <y <A, = 00 <x <oo
with two symmetrically placed electrodes which have finite dimensions ab and
adt (— Iz L y=0, h). We shall assume that the extemal magnetic field
H (0, 0, H,) is uniform and perpendicular to the stream v (u (z, ¥), v (z, ¥), O) of the
electroconductive medium. For low magnetic Reynolds numbers, asis assumed here, the
intrinsic magnetic field of the investigated currents is small compared with the external
one, and therefore can be neglected.

In the case of isothermal conditions, according to the phenomenological theory, we
have following relations between the density of the electric current, the electric potential
and the external force [2].
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Here 0, (M), 0y, (H), ... are components of the tensor of conductivity, which depend

on the magnitude of magnetic field and are interrelated by conditions of symmetry (accord-

ing to the correlations of Onsager).

5xx(H) = Oyy (H): Cxy (H) = — 0 (H) (1-2)

In general case the components of the conductivity tensor are determined from the
kinetic theory.
In particular, for a weakly ionized plasma, we have (3]
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where a, ¢, m, and r are density, charge, mass and relaxation time of electrons. The
symbol { ) applied to the function g (x} denotes the integral of the kinetic averaging

(o]
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g (x)) = LY Ve 3 g(x)xre-*dx <x _— 7@) (1.4)

Here v and T, are the velocity and temperature of the electrons, & — Boltzmann's
constant. If the relaxation time r, does not depend on v, according to (1, 4), the angular
brackets in (1.3) can be omitted.

For the conditions assumed in Eq. (1.1) together with conditions of continuity of the
current and incompressibility of the medium it is possible to introduce the notion of a
complex current j (z) expressed by the relations
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In the band O < Imz < % the complex current j (2) is determined from the boundary
conditions

Re{(1 4+ iRys (HYH)j (1)} = c s (HyHv(t) on I’ (1.6)
Imj(t)=0 on L, limj(z) =0 for |z]—00 (EL=L+L"

These conditions have been obtained with the assumption that the electrodes and
insulators are made from ideal materials. In {1.6) L.’ = ab - a’b’ denotes electrodes
and L ” insulators; the conductivity ¢ (H) and Hall constant Ry of the medium flowing
in the magnetic field are related with the components of the conductivity tensor by the
following expressions:

o2 (H) ¥ 6,2 (H) B Oy (H)
DU T H eI + o)

6 (H) = (A.7)

Here the law of the distribution of v (¢) on L “is not specified but it is natural to
assume that the flow rates of the electroconductive medium at the flow in through one
electrode and suck off through the other are finite and equal to each other. In this way we
have a magnetohydrodynamic channel with intersecting streams.

The inhomogeneous boundary value problem of Riemann — Hilbert with discontinuity
coefficients (the solution of which leads to the determination of the current), will be re-
duced to the Riemann's boundary value problem in the class of sutomorphic functions.

For this purpose we shall change the variables by putting

E=nz/h (@E=t+in, z=z+ iy (1.8)

This substitation will change the geometrical scale and the points a, b, a” and b*
at the edges of the electrodes will acquire new values

A= —mnll/h, B=mnllh,
A" = —nl/ h + in, B =al/h -+ in
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In the band < Im§ < 0 we shall introduce a function j(§), which is the
complex-conjugate of j ({) in the region () < Im{ < x at the points symmetrical with
respect to the axis &

Now the boundary conditions (1.6) are reduced to the following form:

{ —iRys(H)H 26 (H) v (tr) H

W (ty) = —W‘F‘ )+ oot R

W) = ¥ () on Ly, Hm¥E) =0 for [g]=o0
(==L L1")

. ¥+ (@) for 0<LIm{m, YO =/ =7gEM—il,E&n (1.9)
4 = —
Fe) = {‘P‘@} for —<Im{<0, W@ =i0=/sC—m+iiqE—n

Here L, = AB + A'B'+ A"B"" (A" = —=al | h — in, B =al/j—in),
and L, ”’in the remaining part of the straight lines 7 =0 and 7 = |n|.

The band — 7 <Im { < is one of the fundamental regions of a single period group,
created by the parabolic substitations P () =& + 2nik (k +1,+2,..).

The function ¢ is automorphic in relation to the group y;, this function has a first order
pole on the right end of the band.

Egs. {1.9) represent the Riemaan boundary value problem with discontinuity coefficients
in the class of periodic functions, where v () must satisfy H8lder boundary condition on
L,"

The most general solution of the problem (1.9) which satisfies the initial conditions
(1.6) has the form (everywhere in the following the previous variables are used):
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Where W (z) = Ce ™" +- O (e¥*/")  for |z]—> o

P () =ig@my) —ii,(ny)  for 0<Imz<h
D) =i @ =9+ i, (5, —y) for —h<Imz<g

¥ (z) = {
Function ¥ (2) is limited on the edges of the band — 5 <Imz < A and possesses
integrable properties at the enda of electrodes o, b, a”and 5" The real constant C in Eq.
(1.10), can be determined from additional physical considerations.

2. Now we shall calculate the basic integral characteristics of the channel. For the
sake of definiteness we shall assume that the magnetohydrodynamic channel is working in
the generator mode.

Using Sokhotskii — Plemel formulas
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g+ S(H)Hv (1) s(H)H
VO =armpmm M (t){mc{i—i—iRHc(H)H} X 2.0
oov(s) ede i(l—iRys (H)H)
X 4 N — . — I4
LT S T YT iy ot L
— s e () s(yH =
R0 T c(1— iR (H) H) Hl(t){nie(i—iRHc(H)H}
¢ ow(sy e'ds z(i+zRH6(H) H
) T VIt By o) 1P }(*‘ tezl

”1 (t) == [(et . g~:l/-'t)(et + eﬂl;’h)]—‘/'g+£ [(et + e—:tl/h) (enl/h_et)]-‘/gvs

we find the values of the normal and tangential components of the current on the electrodes:
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Constant C is determined in this case from the Ohm's integral law applied to the
channel and the outer circuit,

E — 29, = I Q. (2.3)

Here £ is the electromotive force; 2@,3 is the potential between the electrodes; / is
the total current, passing through the electrodes and (,, is the external load.
Taking into account that on insulators fy = (0 we obtain on the axis x

(2.4)
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Here & is the height of the channel, G is the volume flow-rate of the medium of the

main stream.
After substituting (2.4) into (2.3) and a sxmple transformation we obtain
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A A
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In order to clarify further theoretical computation and the explanation of physical
effects, stipulated by the simultaneous effect of the anisotropy of conductivity and the
presence of permeable electrodes, we shall first consider two particular modes of the
converter operation : idle running and short circuit.

In the first case / = 0 and we have

L H (A + Ay) . ! — 5
2@9_24)”*‘1‘ n,;“_*_(an(/[) ) B V-i T“([{HJ (H) /[)'
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R Aa( Ryl (s (H) H)? - __)_ Do) = (14 AL = L, (2.7)

It follows from this that the electromotive forces in the channels with permeable and
impermeable electrodes differ by the factor (1 + A). In the scheme of flow considered, the
dimensionless parameter assumes zero value at v (t) =0 on L “(no flow in or out through
the electrodes) and when Ry = 0 (Hall effect is absent) the sign of A depends on the mutual
direction of the main stream and blown stream in the channel.

At the short circuit conditions 2¢, = ( and therefore

I — 83 (I7) As A 1 (AI%‘ Az)
* (Ac—}—A V1+(RHG(II)II) {

ae (A + (75 (id) 1]

+ VIF Ras A P 553 (- R e () 1y 20 a1

(H) Ay :
_ (I+NE R,
Sy A (2.8)
5 Ag 1 Ax
Q= VI+ R () I 5o 5
a’ 7’ :75/ 3’ 4 : ﬁ,
Y off \ //,f N oH
v _ (( : ,.’ /"‘ // Y ( >
L= \L L
a é g 0 @ z @ 0 ¢ :
- Fig. 2 Fig. 3

The magnitude Qb represents the internal resistance of the generator with impermeable,
solid electrodes. The value of {}; was theoretically investigated in sufficient detail for a
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wide range of change of physical constants and the channe] geometry {6 to 8].
In the general case, if the load parameter g (characterising the regime of the work of
the power converter)

Q

13

=575,

(=
AN

g <1 (2.9)

is introduced, the formulas for the total current [ and electrical power N assume a form
similar to the equationa for the channel with impermeable electrodes:

e gy B
I'=(1—g(1-+A7A o = (1—q) o
, 2 E®
N=20l=q—)(1 + A g =a(l—q) 5 (2.10)
Keeping in mind that the components of velocity for an incompressible mediom are
expressed by the current function ¢ (2, y) (u = 0P/ dy, v = — o / dx), we find
the Joule dissipation
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If there is no injection of the medium, Eqgs. (2.10) and (2.11) change into known
relations [6 to 8]

I =1 —qE]Q, N =q(1 —q) E2/ Q, Q = El — N

A qualitative picture of the electric field in the channel with permeable electrodes
can be presented in an approximate form as a superposition of two partial distributions of
the current.

When there is no in- and outflow the lines of current are distorted in the middle zone
of the channel and basically concentrated in small regions at the ends of electrodes
{Fig. 1), This phenomenon is connecied with screening of the Hall’s em{ acting along
the channel by the conductive walls of the channel.

If the basic stream is not present and only the conductive medium is injected through
one electrode and sucked off through the other (for example, with constant speed) then a
Faraday emf is generated along the channel. This emf produces circulating currents on the
electrodes, this, in turn, leads to the appearance of Hall’s emf which, unlike in the pre-
vious case, acts ncw between the electrodes. Current lines for this kind of flow are pre-
sented in Fig. 2.

The resultant qualitative picture of the current distribution in the channel with per-
meable electrodes is presented in Fig. 3.

In the scheme of the channel under consideration it is possible to control the current
distribution on the electrodes by choosing a suitable rule for the injection and suction
out of the stream, and by choosing the ratio of the flow rate of the basic and the injected
streams, it is possible to adjustthe total current which passes through the load, and the
potential between the electrodes.
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