
SOLUTION OF THE PROBLEM OF CURRENT DISTRIBUTION 
IN A MAGNETOHYDRODYNIAMIC CHANNEL WITH PERMEABLE 
ELECTRODES AT TENSOR CHARACTER OF CONDUCTIVITY 

OF THE FLOWING MEDIUM 

PMM Vol. 32, No. 3, 1968, pp. 353-359 

In. P. EMETS 

(Kiev) 

(Received Iunc 5, 1967) 

The flow is investigated in a linear magnetohydrodynamic channel with two permeable 
electrodes for the case of an anisotropic conductivity (stipulated by the Hall effect), when 
the electrocondactive medium ia blown in through one electrode and mtcked off through the 
other. This scheme combines the properties of Hall and Faraday energy convertera [I]. 

Mathematical determination of the electric field in the channel leads to the solution 
of a Riemann - Hilbert inhomogeneous boundary value problem, which by the method of 
analytic continuation ie reduced to a Riemann boundary value problem in the class of 
automorphic functions. 

1. Let us consider a flat magnetohydrodynamic channel 0 ,< y ,< h, - DO < x < 00 
with twc symmetrically placed electrodes which have finite dfmenaion~ ob and 
a’b’ (- 1 < x < I; y = 0, h). We ahall assume that the external maanetic field 
A (0, 0. Hz1 is uniform and perpendicular to the stream v (U (5, y), u (z, y), 0) of the 
electroconductive medium. For low magnetic Reynolds numbers, as ia cunumed here, the 
intrinsic magnetic field of the investigated currenta is amall compared with the external 
one, and therefore can be neglected. 

In the case of isothermal conditfonn, according to the phanomenological theory, we 
have following relations between the density of the electric current, the electric potential 
and the external force [z]. 

ix (G ?/I = 5.m (W (- s +$uR)+a,,(H)(~~-+uH) 

i,, (5, ?A = Q,, (W (- s + +uiq +$/v(H) (-s-+LN), HGH, 
(I.11 

Ihe axx WI, azy WI, . . . are componwttm of the tenacr of conductivity, which depend 
on the magnitude of magnetic field and are interrelated by conditiona of symmetry (accord- 
ing to the correlations -of Onaager). 

5xx(ff) = $"(H), %,W = --5yM) (1.2) 
In general cane the componenta of the conductfvfty tensor are determined from the 

kinetic theory. 
In particular, for a weakly ionized plasma. we have [s] 

Gc@x(H) = -s<*+&,mc)‘)’ TS 
1 + (ez H / mc)’ > (1.3) 
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where n, c, m, and r are density, charge, mass and relaxation time of electrons. The 
symboi ( ) applied to the function g (xf denotes the integral of the kinetic averaging 

(:(z))-~~/(x)x~~~e-“dx (x=-g-) 
; e 

(1.4) 

Rere V and T, nre the velocity and temperature of the electrons, k - Boltzmann’s 
constant. If the relaxation time r, does not depend on V, according to (1, 41, the angular 
brackets in f1.3) can be omitted. 

For the conditions aaaumed in Eq. (1.1) together with conditions of continuity of the 
current and incompressibility of the medium it is possible to introduce the notion of a 
complex current j (z) expressed by the relations 

j, (x, IJ) == g = 2$ , j!, (2, y) = z&. z: - 2 

(1.5) 

fn the band 0 < Imz f h the complex current j (I) is determined from the boundary 
conditions 

Re{(l + iR~~(fI)H)j(l)} = ~%(Il)Ho(t) on L’ (1.6) 
Im j (t) =:: 0 on Lv, limi(z) = 0 for IZ j -+ w (t E L = L’ + L”) 

These conditions have been obtained with the assumption that the electrodes and 
insulators are made from ideal materials. In (1.6) L’ = & + a’b’ denotes electtodss 
and L “insulators; the co&activity o (H) and Hall constant RH of the medium flowing 
in the magnetic field are related with the components of the conductivity tensor by the 
following expressions: 

Here the law of the distribution of v (t) on L ‘is not specified but it is natural to 
assume that the flow rates of the electroconductive medium at the flow in through one 
electrode and sack off through the other are finite and equal to each other. In this way we 
have a ma~etohydrod~~ic channel with intersecting streams. 

The inhomog~eou6 boundary value problem of Riemann - Hilbert with ~scontinnity 
coefficients (the solution of which Ieads to the determination of the current), will be re- 
duced to the Riemann’s boundary value problem in the class of automorphic fanctions. 

For this parpoae we ahall change the variablea by putting 

F, = nz/h (5 = F; f h z =I + iy) (1.8) 

This substitution will change the geometrical scale and the points a, b, o’ and b’ 
at the edges of the electrodes will acqaire new values 

A = - 3tl I h, B = xl / h, 

A’ = --l/h + in, B' = d 1 h + ix 
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fnthaband n<I=f;<@ we ahal introduce a function 
complexconjagste of ) (0 in the region 

j (c)S which is the 

respect to the axis 6 
0 < fm 5 < of at the points symusatricaI with 

Now the boundary conditions (1.6) are reduced to the following form: 

‘r+ (tt) = - on 4 

Y+ (Zl) = Y-(tx) oil _&I”, itiI?lY(~p=O for ICI-@J 

(t,=L1=Lr’+ Ll”) 

Y+(g) for O<lmS<rr, 
‘F(Q = 

Y+(5I=i(5)= i~(f,rl)-iij,Rts) (1, 9) 

y-- f5f for -rr<Im5<4 ~t61=i~=iEf5,-?f+iin(4,-t7) 

Here 25,’ =A3 3_A’~~+A”B’“(A”‘=-_nlEh- irt,#‘=&/j--in), 
and L, “is the remaining part of the straight lines ‘1~ 0 aad 3 = Itit. 

The band - n < Im [< n is one of the fundamental regions of a single period group, 
created by the parabolic eubstitations ~~ (5) = 5 + 2nik: (k f 1) + 2, ,” .). 
The fnxctiea $ is automorphic ia nlatloa to the gronp /.tk* this function has a ffrst order 
pole oa the right end of the band. 

Eqs. f&9) represent the Rieruasn boundary valae problem with discontinuity coefficients 
in the class of periodic functions, where v (t) mnst satisfy IHIder boundary condition on 
L, : 

The most general solution of the problem (1.9) which satisfies the initial conditions 
(1.6) has ths form feverywhare in the following the previous variables are used): 

Y (2) = 
i 

i (21 = i, f=, Yf - ‘iv (2% VI for O<Imz<h 

~)=ix(z,-~)+iiv(x,-y) for -h<Imz<o 

Function y (2) is limited on the edges of the band - h < Imx < 6 and possesses 
integrable properties at the ands of electrodes o, 6, s a aad 6 : Ths reaI constant C in Eq. 
fl. l@, cart be determined from additional physicd considtrations. 

2. Now we shall calculate the basic integraf characteristics of the charmal. For the 
sake of definiteaess we shall assume that the magnatohydrodyuamic channel is working in 
the generator mode. 

Using Sokbotskii - PlemeI formulas 
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5 (HI ffv W 
“If+ ft) = c (I+ iR,a (H) H) 

B(ff) iI 

nic(l +i~~~~(ff)ff) ’ 

x 
F 2l (s) es ds i(l +iR,cS(H) Ii) 

Ill(s)s-- e -t? 
--.- ___-- Ce’ 

VI + (11,,5(rf) /I)” 
(s,f 5 1,‘) 

L 

] I, (t) z [(et _ e-“‘/:b)(ef + e~llh)]-‘iz+& [(et + e-XZ/fl) (e7CZ/lL_et)]-*/~-E 

we find the values of the normal and tangential components of the current on the electrodes: 

Constant C is determined in this case from the Ohm’s integral law applied to the 
channel and the outer circuit. 

E - 2cp, = IQ, (2.3) 

Here E is the electromotive force; 2q, is the potential between the electrodes; I is 
the total current, passing through the electrodes and Q,, is the external load. 

Taking into account that on insulators j, = 0 we obtain on the axis z 
(2.4) 

Here 8 is the height of the channel, G is the volume flow-rate of the medium of the 

main stream. 
After substituting (2.4) into (2.3) and a simple transformation we obtain 
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A 

A,(t)= j &-+$, 
L' 

AI = AA u (0 dt, A2= j l-I,(t)A,(t)di 
-A 

A -A 

A3 = j etIIl(t)dt, A4 = \ n2 (tl4, (t> dt, As = co II2 (t) A0 (t) dt 
--A 20 ;1 

--)I 

A, = 
3 

efI12 (t) dt, A7 = yetn2(t)dt (A=$) (2.6) 
-a i: 

In order to clarify further theoretical computation and the explanation of physical 

effects, stipulated by the simultaneous effect of the anisotropy of conductivity and the 

presence of permeable electrodes, we shall first consider two particular modes of the 

converter operation : idle running and short circuit. 

In the first case I = 0 and we have 

It follows from this that the electromotive forces in the channels with permeable and 

impermeable electrodes differ by the factor (1 + A). In the scheme of flow considered, the 

dimensionless parameter assumes zero value at v (t) = 0 on L ‘(no flow in or out through 

the electrodes) and when RH 5 0 (Hall effect is absent) the sign of A depends on the mutual 
direction of the main stream and blown stream in the channel. 

At the short circuit conditions 2q1, = 0 and therefore 

(2.8) 

Fig. 1 

The magnitude fib represents the internal resistance of the generator with impermeable, 
solid electrodes. The value of n b was theoretically investigated in sufficient detail for a 
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wide range of change of physical constants and the channel geometry t6 to 81. 
In the general case, if the load parameter q (characttrising the regime of the work of 

the power converter) 

is introduced, the formulas for the total current I and electrical power N assume a form 
similar to the equations for the channel with impermeable electrodes: 

(2.10) 

Keeping in mind that the components of velocity for an incompressible medium are 
expressed by the current function I$ (I, y) (u = &+ / a~, v == _ a+ / ar), we find 
the Joule dissipation 

(2.11) 

If there is no injection of the medium, Eqs. (2.10) and (2.11) change into known 
relations [6 to 31 

I -7 (1 - q) E / Qb, N = q (1 - 4) E2 / Qb, Q=EI--N 

A qualitative picture of the electric field in the channel with permeable eIectrodea 
can be presented in an approximate form as a superposition of two partial dfstributions of 
the current. 

When there is no in- and outflow the lines of current are distorted in the middle zone 
of the channel and basically concentrated in small regions at the ends of electrodes 
(Fig. 1). This phenomenon is connected with screening of the Hall’s emf acting along 
the channel by tbe conductive walls of the channel. 

If the basic stream is not present and only the conductive medium is injected through 
one electrode and sucked off through the other (for example, with constant speed) then a 
Faraday emf is generated along the channel. This emf produces circulating correnta on the 
electrodes, this, in turn, leads to the appearauce of Hall’s emf which, unlike in the pre- 
vious case, acts new between the electrodes. Current lines for this kind of flow are pre- 
sented in Fig. 2. 

The resnltant qualitative picture of the current distribution in the channel with per- 
meable electrodes is presented in Fig. 3. 

In the scheme of the channel under consideration it is possible to control the current 
distribution on the electrodes by choosing a suitable rule for the injection and soctioa 
out of the stream, and by choosing the ratio of the flow rate of the basic and the injected 
streams, it is possible to adjust the total current which passes through the load, and the 
potential between the electrodes. 
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